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The Thermal Inertia of Materials Heated with a Laser 
Pulse Faster than Relaxation Time 1 

j .  Marciak_Kozlowska 2, 3 and M.  Kozlowski  4 

The nonlocal hyperbolic heat conduction equation is used to describe the ther- 
mal inertia of thin metal films (TMF) heated with femtosecond laser pulses. It 
is shown that for TMF the signatures of thermal inertia are (i) the delay of the 
heating process and (ii) the strong localization of the thermal energy in TMF. 

KEY WORDS: hyperbolic heat transfer; thermal inertia; thin metal films; 
pulse heating. 

1. INTRODUCTION 

The differential equations of thermal energy transfer should be hyperbolic 
so as to exclude action at distance; yet the equations of irreversible thermo- 
dynamics-those of Navier-Stokes and Fourier are parabolic. 

In the present paper, the dynamics of the heat transfer in thin metal 
films is investigated. When an ultrafast laser pulse (femtosecond pulse) 
interacts with a metal surface, the excited electrons become the main 
carriers of the thermal energy. For a femtosecond laser pulse, the duration 
of the pulse is of the same order as the electron relaxation time. In this 
case, the hyperbolicity of the thermal energy transfer plays an important 
role. 

In this paper, the theoretical as well as the experimental aspects of the 
hyperbolic heat conduction equation (HHC) are discussed. First, the math- 
ematical structure of HHC is discussed. The different approaches to the 
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derivation of HHC (e.g., memory function of the system) are presented. 
It is shown that the inherent feature of the solution of HHC is the inertia 
of the heat transfer. The signatures of the inertia are (i) the delay of the 
heating process in comparison to the external thermal perturbation and (ii) 
the strong localization of the thermal excitation. 

2. FUNDAMENTALS OF RAPID THERMAL PROCESSES 

Radiation deposition of energy in materials is a fundamental phe- 
nomena to laser processing. It converts radiation energy into material's 
internal energy, which initiates many thermal phenomena such as heat 
pulse propagation, melting, and evaporation. The operation of many laser 
techniques requires an accurate understanding and control of the energy 
deposition and transport processes. 

Recently, radiation deposition and the subsequent energy transport in 
metals have been investigated with picosecond and femtosecond resolutions 
[ 1-7]. Results show that during high-power and short-pulse laser heating, 
free electrons can be heated to an effective temperature much higher than 
the lattice temperature, which in turn leads to both a much faster energy 
propagation process and a much smaller lattice-temperature rise than those 
predicted from conventional radiation heating model. Corkum et al. [8] 
found that this electron-lattice nonequilibrium heating mechanism can 
significantly increase the resistance of molybdenum and copper mirrors to 
thermal damage during high-power laser irradiation when the laser pulse 
duration is shorter than one nanosecond. Clemens et al. [9] studied 
thermal transport in multilayer metals during picosecond laser heating. 
The measured temperature response in the first 20 ps was found to be dif- 
ferent from predictions of the conventional Fourier model. Due to the 
relatively low temporal resolution of the experiment ( ~  4 ps), however, it is 
difficult to determine whether this difference is the result of nonequilibrium 
laser heating or is due to other heat conduction mechanism, such as non- 
Fourier heat conduction, or reflection and refraction of thermal waves at 
interfaces. 

Heat is conducted in solids through electrons and phonons. In metals, 
electrons dominate the heat conduction, while in insulators and semi- 
conductors, phonons are the major heat carriers. Table I lists important 
features of the electrons and phonons. The traditional thermal science, 
or macroscale heat transfer, employs phenomenological laws, such as 
Fourier's law, without considering the detailed motion of the heat carriers. 
Decreasing dimensions, however, has brought an increasing need of under- 
standing the heat transfer processes from the microscopic point of view of 
the heat carriers. 
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Table I. General Features of Heat Carriers 
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Free electron Phonon 

Generation Ionization or excitation Lattice vibration 
Propagation media Vacuum or medium Medium only 

Statistics Fermion Boson 
Dispersion E = h 2q2/(2m) E = E( q ) 

Velocity (m. s ~) ~ 10 ~ ~ 10 3 

In earlier papers [ 10, 13-1, the microscopic picture of the heat trans- 
port in thin metal films was developed and applied to gold film irradiated 
with femtosecond laser pulses. 

The response of the electron and phonon gases to the external pertur- 
bation initiated by laser irradiation can be described with the help of a 
memory  function of the system. To that aim, let us consider the generalized 
Fourier law: 

X 
t 

q ( t ) =  - K ( t - t ' ) V T ( t ' ) d t '  (1) 
--r.C 

where q(t) is the density of a thermal energy flux, T(t') is the temperature 
of electrons, and K ( t -  t ') is a memory  function for thermal processes. The 
density of thermal energy flux satisfies the following equation of heat con- 
duction: 

O 
T(t) 1 V2 ~' K ( t -  t') T(t') dt' (2) 

Ot pcv J_~  

where p is the density of charge carriers and cv is the specific heat of elec- 
trons in a constant volume. We introduce the following equation for the 
memory  function describing the Fermi gas of charge carriers: 

K ( t - t ' ) = K  l lim O ( t - - t ' - - t o )  (3) 
t 0 ~ 0  

In this case, the electron has a very "short" memory due to thermal 
disturbances of the state of equilibrium. Combining Eqs. (3) and (2), we 
obtain 

O---T=I--~-KI V2T (4) 
at pcv 

840/17/5-9 
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Equation (4) has the form of the parabolic equation for heat conduc- 
tion (PHC). Using this analogy, Eq. (4) may be transformed as follows: 

0 
Ot T = D T  V2T (5) 

where the heat diffusion coefficient DT is defined as follows: 

Kl 
D T - -  ( 6 )  

pcv  

From Eq. (6), we obtain the relation between the memory function 
and the diffusion coefficient: 

K ( l - - t ' ) = D T p C  v lim 6 ( t - t - t ' o )  (7) 
t 0 ~ 0  

In the case when the electron gas shows a "long" memory due to ther- 
mal disturbances, one obtains for memory function 

K( t - t') = K2 (8) 

When Eq. (8) is substituted into Eq. (2), we obtain 

a K2 
V 2 f '  T(t ')dt (9) 

a t  T =  pcv  - ~  

Differentiating both sides of Eq. (9) with respect to t, we obtain 

a2T_ K2 V2 T (10) 
at 2 pCv 

Equation (10) is the hyperbolic wave equation describing thermal 
wave propagation in a charge carrier gas in a metal film. Using a well- 
known form of the wave equation, 

1 a2T 
- V Z T  (11) 

V 2 a t  2 

and comparing Eqs. (10) and (11), we obtain the following form for the 
memory function: 

K(t - t') = pCv v2 
(12) 

v = finite, v < oo 
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As the third case, "intermediate memory" is considered: 

K( t - -  t ' )  = K 3  e x p [  - - ( t  --  t ' ) / r ]  
/: (13) 

where r is the relaxation time of thermal processes. Combining Eqs. 
and (2), we obtain 

0 2 T  c v OT K3 
Cv --~-_ q - V2T 

r 8t pr  

Thus, finally, 

and 

K 3 = D r c v p  

13) 

14) 

15) 

0 2 T  1 0 T  
Ot~+ DTV2T (16) 

z Ot r 

Equation (16) is the hyperbolic equation for heat conduction (HHC), 
in which the electron gas is treated as a Fermion gas. The diffusion coef- 
ficient DT can be written in the form [ 14] 

D T = L v2 .¢ 3 v (17) 

where vv is the Fermi velocity for the electron gas in a semiconductor. 
Applying Eq. (17) we can transform the hyperbolic equation for heat con- 
duction, Eq. (16), as follows: 

0 2 T  1 0 T  1 , 
Ot ~ + v; e V2T (18) 

z Ot 3 

Let us denote the velocity of disturbance propagation in the electron 
gas as s: 

s = x / q ~ v  v (19) 

Using the definition of s, Eq. (18) may be written in the form 

1 02T 1 0 T _  V2 T 
$2 0t  2 -b (20) 72s 2 0 t  

For the electron gas, treated as the Fermi gas, the velocity of sound 
propagation is described by the equation [ 15 ] 

S \1/2 
( PF ( l + F 0 ) )  , P F = m v F  (21) 

Vs = \3mm* 
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where m is the mass of a free (non-interacting) electron and m* is the effec- 
tive electron mass. Constant F s represents the magnitude of carrier-carrier 
interaction in the Fermi gas. In the case of very weak interaction, m* ~ m 
and FS--* 0, so according to Eq. (21), 

m0F ~f~ 
~ 0 F VS v/~m (22) 

To sum up, we can make a statement that for the case of weak elec- 
tron-electron interaction, sound velocity vs = ~ vv and this velocity is 
equal to the velocity of thermal disturbance propagation s. From this we 
conclude that the hyperbolic equation for heat conduction, Eq. (20), is 
identical as the equation for second sound propagation in the electron gas: 

1 02T 1 OT V2 T 
v~ Ot 2 b- - -w- -=  (23) 

" rv~ Ot 

Using the definition, expressed by Eq. (17), for the heat diffusion coef- 
ficient, Eq. (23) may be written in the form 

1 0 Z T  1 0 T  
Vs or'- =v2r  (24) 

The mathematical analysis of Eq. (23) leads to the following conclu- 
sions. 

(1) In the case when v s ~ oo, rv s is finite, Eq. (24) transforms into 
the parabolic equation for heat diffusion: 

1 0 T  
-= V2T (25) 

D-r Ot 

(2) In the case when r --* m, Vs is finite, Eq. (24) transforms into the 
wave equation: 

10"-T 
- -  7 2 T  (26) 

v~ Ot 2 

Equation (26) describes propagation of the thermal wave in the elec- 
tron gas. From the point of view of theoretical physics, condition v s--* oe 
violates the special theory of relativity. From this theory we know that 
there is a limited velocity of interaction propagation and this velocity 
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/)lira = C, where c is the velocity of light in a vacuum. Multiplying both sides 
of Eq. (24) by c 2, we obtain 

C 2 0 2 T  c 2 0 T  
, c 2 V2T (27) 

v; Ot z + D v 8t 

Denoting fl = Vs/C, Eq. (27) may be written in the form 

1 02T 1 8T  
~2 Off" + DT Ot - c2 V2T (28) 

where b T = rfl 2, fl < 1. 
On the basis of the above considerations, we conclude that the heat 

conduction equation, which satisfies the special theory of relativity, 
acquires the form of the partial hyperbolic Eq. (28). The rejection of the 
first component in Eq. (28) violates the special theory of relativity. 

3. THE RELAXATION DYNAMICS OF ULTRAFAST THERMAL 
LASER PULSES 

Heat transport during fast laser heating of solids has become a very 
active research area due to the significant applications of short pulse lasers 
in the fabrication of sophisticated microstructures, syntheses of advanced 
materials, and measurements of thin film properties. Laser heating of 
metals involves the deposition of radiation energy on electrons, the energy 
exchange between electrons and the lattice, and the propagation of energy 
through the media. 

Ultrafast dynamics of hot electrons in metals has become an area of 
active theoretical investigation. The theoretical predictions showed that 
under ultrafast excitation conditions the electrons in a metal can exist out 
of equilibrium with the lattice for times of the order of the electron energy 
relaxation time [2,5] .  Model calculations suggest that it should be 
possible to heat the electron gas to temperature T~ of up to several 
thousand degrees for a few picoseconds while keeping the lattice tem- 
perature T~ relatively cold. Observing the subsequent equilibration of the 
electronic system with the lattice allows one to directly study electron- 
phonon coupling under various conditions. 

Several groups have undertaken investigations relating dynamics 
changes in the optical constants (reflectivity, transmissivity) to relative 
changes in electronic temperature. But only recently, the direct measure- 
ment of electron temperature has been reported. 
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In an earlier investigation [2, 5], the temperature of hot electron gas 
in thin gold film ( /=300A)  was measured, and a reproducible and 
systematic deviation from a simple Fermi-Dirac (FD) distribution for 
short time ,4t~0.4 ps were obtained. As stated in Ref. 5, this deviation 
arises due to the finite time required for the nascent electrons to equilibrate 
to a FD distribution. The nascent electrons are the electrons created by the 
direct absorption of the photons prior to any scattering. 

In earlier papers [10, 12, 13], the relaxation dynamics of the electron 
temperature with the hyperbolic heat conduction equation (HHC), Eq. 
(24), was investigated. Conventional laser heating processes which involve 
a relatively low-energy flux and long laser pulse have been succesfully 
modeled in metal processing and in measuring thermal diffusivity of thin 
films [16]. However, the applicability of these models to short-pulse laser 
heating is questionable [2, 5, 10-13]. As is well known, the Anisimov 
model [ 16] does not properly take into account the finite time for the nas- 
cent electrons to relax to the FD distribution. In the Anisimov model, the 
Fourier law for heat diffusion in the electron gas is assumed. However, the 
diffusion equation is valid only when the relaxation time is zero, r = 0, and 
the velocity of the thermalization is infinite, v ~ oz. 

The effects of ultrafast heat transport can be observed in the results of 
front-pump back probe measurements [2, 5]. The results of these type 
experiments can be summarized as follows. First, the measured delays are 
much shorter than would be expected if heat were carried by the diffusion 
of electrons in equilibrium with the lattice (tens of picoseconds). This 
suggests that heat is transported via the electron gas alone and that the 
electrons are out of equilibrium with the lattice on this time scale. Second, 
since the delay increases approximately linearly with the sample thickness, 
the heat transport velocity can be extracted, vh ~ 10 8 cm-s-1 = 1/~m .ps-1 
This is of the same order of magnitude as the Fermi velocity of electrons 
in gold, 1.4/lm. ps -  ~. 

Since heat moves at a velocity comparable to w- -Fe rmi  velocity of 
the electron gas, it is natural to question exactly how the transport takes 
place. Since those electrons which lie close to the Fermi surface are the 
principal contributors to transport, the heat-carrying electrons move at rE. 
In the limit of lengths longer than the momentum relaxation length, 2, the 
random walk behavior is averaged and the electron motion is subject to a 
diffusion equation. Conversely, on a length scale shorter than 2, the elec- 
tron move ballistically with a velocity close to rE. 

The importance of the ballistic motion may be appreciated by con- 
sidering the different hot-electron scattering lengths reported in the litera- 
ture. The electron-electron scattering length in gold, 2ee has been 
calculated in Ref. 17. They find that ),oe ~ ( E - E v )  2 for electrons close to 
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the Fermi level. For 2-eV electrons 2~e ,~ 35 nm, increasing to 80 nm for 
1 eV. The electron-phonon scattering length ).ep is usually inferred from 
conductivity data. Using Drude relaxation times [14], 2~p can be com- 
puted, 2¢p ~ 42 nm at 273 K. This is shorter than 2~e, but of the same order 
of magnitude. Thus, we would expect that both electron-electron and elec- 
tron-phonon scattering are important on this length scale. However, since 
conductivity experiments are steady-state measurements, the contribution 
of phonon scattering in a femtosecond regime experiment, such as pump- 
probe ultrafast lasers, is uncertain. 

In the usual electron-phonon coupling model [ 16], one describes the 
metal as two coupled subsystems, one for electrons and one for phonons. 
Each subsystem is in local equilibrium so the electrons are characterized by 
a FD distribution at temperature T~ and the phonon distribution is charac- 
terized by a Bose-Einstein distribution at the lattice temperature T~. The 
coupling between the two systems occurs via the electron-phonon interac- 
tion. The time evolution of the energies in the two subsystems is given by 
the coupled parabolic differential equations (Fourier law). 

For ultrafast lasers, the duration of pump pulse is of the order of 
relaxation time in metals [ 14, 17]. In that case hyperbolic heat conduction 
equation, Eq. (24) must be used. 

In an earlier paper [13], it was shown that for thin gold film (1= 
0.03/zm) irradiated with a short laser pulse (At = 0.4 ps), the nonstationary 
temperature profiles can be well described with the help of HHC. When the 
experimental data [ 5 ] and theoretical calculations are compared, the follow- 
ing values of the thermal wave velocity Vs = 0.15/zm. ps -~ and relaxation 
time r = 0.12 ps are obtained. Considering that for electron Fermi gas the 
electron mean free path can be calculated according to the equation 

~ = v s r  (29) 

and using the above-mentioned values for Vs and r, one can obtain for 2 = 
180 nm, which is of the same order as the value obtained in an earlier 
paper [ 17]. However, it must be stressed that our values were obtained for 
a nonstationary heating process. 

4. THE THERMAL INERTIA OF MATERIALS HEATED WITH 
ULTRAFAST LASER PULSES 

According to the constitutive relation in the thermal wave model, heat 
flux q obeys the relatio [ 10] 

•(¢', t + r) = - k  VT(V, t) (30) 
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where r is the relaxation time (a phase lag) and k is the thermal conduc- 
tivity. The temperature gradient established in the material at time t results 
in a heat flux that occurred at a later time t + r due to the insufficient time 
of response. For combining with the energy equation, however, all the physi- 
cal quantities involved must correspond to the same instant of time. The 
Taylor's series expansion is thus applied to the heat flux q in Eq. (30) to give 

- ~  a2g(r, t) r 2 
q(~ t) + r +  ~ 2 - - - k V T ( F , t )  (31') 

In the linearized thermal wave theory, the phase lag is assumed to be small 
and the higher-order terms in Eq. (31) are neglected. By retaining only the 
first-order term in r, Eq. (31) becomes 

0q(r, t) 
q(F, t) + r Ot = - k  VT(~', t) (32) 

After combining Eq. (32) with the energy conservation equation 

OT 
- V .Yl= p C ~ - ~  (33) 

one obtains the HHC,  Eq. (24). Equation (32) can be compared to the 
equation of the motion for particle with mass m in a resistive medium, 

dg 
yg+ m ~-~ = if(F, t) (34) 

where y is a resistive cofficient, g denotes the velocity, and P(~', t) is the 
external force. Comparing Eqs. (32) and (34) we conclude the corre- 
spondence 

- VT(F, t) ~ if(F, t) 

g(Y, t) ~ 6 
(35) 

~/k ~ m 

For the steady-state case, Eq. (34) reduces to 

y6-- /v0,  t) (36) 

and Eq. (31) reduces to the Fourier law. 
From the relations, given by Eq. (35), we conclude that the greater 

relaxation time corresponds to the greater m a s s - g r e a t e r  inertia. It seems 
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quite resonable to treat the relaxation timer as the measure of  the degree 
of the thermal inertia. 

In earlier papers [ 10-13] ,  it was shown that for the thermal processes 
with characteristic time At>~r, the heat transfer is well described by 
Fourier law. In another way, for At/> r the thermal processes can be called 

H-Temperature,  K 

~ X ~ A 0 . 1  

(a) ~ ~ 2  Length, ~um 

Time,  ps 2 

F-Temperature,  K 

\0.5 

2 Time, ps 

Fig. I. (a) The solution of HHC for Vs=0.15 /Im.ps -l, r= 
0.12 ps, Lit-pulse duration = 0.06 ps. (b) The solution of PHC for 

the same values of Vs, r and Lit = 0.06 ps. 
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inertia-free processes. On the other hand, for thermal processes with At  < r 

the thermal inertia plays an important role. 
In Figs. 1 and 2, the 3D solutions of HHC and PHC equation are 

presented. The solutions are obtained for Vs =0.15 l t m .  p s - '  and r =0.12 s 
[ 13] and for A t  = 0.06 and 0.02 ps. As can easily be seen, the solutions of 

H - T e m p e r a t u r e ,  K 

0.1 

(a) ~~0.2 Leng t h ,  p m  

15001 0.3 
1000 
500 
C 

0.5 

2 

3 
F-Temperature, K 

0.1 

0.2 
Leng t h ,  p m  

150t 0.3 
100 

50 
0 

0.5 

2 T i m e ,  ps  

Fig. 2. (a) The same as Fig. la but with At-pulse duration = 
0.02 ps. (b) The same as Fig. lb, but with At =0.02 ps. 
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H H C  equa t ions  (Figs.  l a  and  2a) show the r e t a rda t ion  of  the response  of  
the system to the external  the rmal  per turba t ion .  The t empe ra tu r e  surface 
shows the effect of  the the rmal  inertia.  Moreover ,  the shor te r  the At, the 
more  local ized is the t empera tu re  surface. F o r  the so lu t ion  of  P H C  (Figs.  
lb  and  2b) the ins tant  hea t ing  of  the system is observed  wi thou t  any  
s ignature  of  the iner t ia  of  the system, and the t empera tu re  in system is 
smeared  out. 

5. C O N C L U S I O N  

In the present  p a p e r  the thermal  iner t ia  of  the hea t  carr iers  in thin 
meta l  films was invest igated.  I t  was shown that  the inherent  feature of  the 
so lu t ion  of  H H C  is the iner t ia  of  heat  transfer. The s ignatures  of  the  iner t ia  
are (i) the r e t a rda t i on  of  the heat ing process  in c o m p a r i s o n  to the t ime of  
the externa l  pe r t u rba t i on  and (ii) the s t rong loca l iza t ion  of  the the rmal  
exci ta t ion.  
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